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Abstract. A three-dimensional representation of the microstructure of porous Vycor glass was
generated from a transmission electron micrograph, and was analysed to compute the locations
of all capillary-condensed water as a function of relative humidity. On solid surfaces where
capillary-condensed water was not present, an adsorbed water layer, whose thickness is a
function of relative humidity, was placed. As a function of relative humidity, fixed pressures
were specified in all capillary-condensed water, and the change in specific surface free energy
with relative humidity was taken into account for the adsorbed water layers. New finite-clement
codes were developed to determine the drying shrinkage, in response to the changes in the
specific surface free energy of the adsorbed water layers and to the fixed pressures in the
capillary condensed water. Existing finite-element and finite-difference codes were used to
evaluate the elastic moduli, the electrical and thermal conductivity, and the fluid permeability of
the material. Bulk properties such as fluid permeability and electrical and thermal conductivity
agreed well with experiment. By adjusting the elastic moduli of the solid backbone, which
are not experimentally determined quantities, the computed porous glass elastic moduli, and
computed low and high relative humidity shrinkage all agreed well (<10%) with experimental
values. At intermediate relative humidities, the agreement for shrinkage was worse, partly due
to inaccuracies in the simulated water desorption curve, and partly due to the fact that water-
induced swelling of the solid backbone, an effect that is probably present in the real material,
was not taken into account in the model computations.

1. Introduction

The phenomenon of drying shrinkage in porous materials is relevant to a variety of problems
of technological interest such as the shrinkage [1] and cracking [2] of concrete, and the
drying of gels and aerogels [3]. In these porous materials, pore diameters are often such
that capillary condensation will occur over some range of partial pressure of the gas phase
of the adsorbent considered. The saturation, which is defined as the fraction of the pore
space filled with liquid phase, of these materials is therefore a strong function of the external
partial pressure of the gas phase. The capillary tension induced by the condensed fluid will
generate stresses at all fluid—solid interfaces, resulting in some deformation of the solid phase
and hence an overall shrinkage in the composite. In addition, changes in specific surface
free energy [4,5] in adsorbed fluid layers can also contribute to the overall shrinkage,
especially at lower partial pressures. In this paper, we focus on the fluid being water,
although the techniques described are general. The partial pressure of water vapour at a
given temperature, divided by the saturated water vapour pressure at the same temperature,
is usually called the relative humidity (RH).
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While many measurements of shrinkage have been made, a direct linkage between
microstructure and shrinkage is still lacking. Mackenzie [6] has presented a general
analytical method for estimating the dilatation of porous materials based on their elastic
properties and the amount of water-filled porosity at a given relative humidity. This
approach is exact for a saturated porous material, but only approximate for partially saturated
materials. In addition, a continuum approach to the general elastic dynamics of unsaturated
and fluid-saturated porous materials has been extensively discussed by Biot [7].

In this paper, a computer modelling approach is presented in which the shrinkage
behaviour of a three-dimensional microstructure is directly computed. Beginning with
a discrete three-dimensional representation of microstructure, a previously developed
algorithm based on the Kelvin—-Laplace equation [1] is used to estimate the equilibrium
location of all capillary-condensed water at some fixed relative humidity. In addition,
the surface energy and thickness of the water layer adsorbed on all exposed (no capillary
condensation) solid surfaces is estimated. A new finite-element analysis method is then
employed to compute the shrinkage of the three-dimensional (3D) composite, which is
caused by the capillary tension present in the condensed water and the surface energy
changes in the adsorbed water. It should be noted that the techniques developed in this
paper do not deal with the dynamics of the shrinkage process or flow of the water during
shrinkage, but only estimate the final equilibrium value of shrinkage. Thus, for example,
it is implicitly assumed that the shrinkage does not alter the microstructure enough to
significantly change the locations of the capillary-condensed water at the resolution being
considered. For the magnitude of the shrinkage strains considered, 0.001 or less, this is a
reasonable assumption.

Other physical properties besides shrinkage depend on microstructure, too, of course.
One way to test the accuracy of the reconstructed microstructures is to compute their physical
properties and compare to experimental measurements on equivalent systems. By comparing
to experimental data for real materials, where possible, we hope to indicate precisely the
advantages and limitations of the 3D media that are reconstructed from 2D images using
our algorithm.

There are several reasons why porous Vycor has been chosen as a material upon which to
test these techniques. First, the total porosity and pore surface area of porous Vycor glass are
similar to those of hardened cement paste, which is our ultimate research interest [1], and the
shrinkage strains found in this material, of the order of 0.001, match the approximate tensile
fracture strain [2] of cement-based materials. More important, however, is the fact that
many of the properties of porous Vycor glass are readily available [8], as are experimental
measurements of porous Vycor shrinkage against external relative humidity [9]. Also, the
drying shrinkage of porous Vycor, in both low [5, 8] and high [9] partial pressure of absorbent
regimes, has been shown to be well described by linear elastic equations [5, 8,9], so that the
finite-element analysis can also be simplified to be linear elastic only. This is unfortunately
not the case in hardened cement paste [1], which is strongly viscoelastic. Because of all of
the above reasons, porous Vycor glass has been chosen to test our reconstruction algorithm
[10] and demonstrate our new shrinkage algorithm.

2. Computational and experimental techniques

2.1. Microstructure generation

The microstructure reconstruction algorithm has previously been fully described [10], so
that only a brief treatment is given here. The 3D digital image structure generated is




Modelling drying shrinkage in reconstructed porous materials 213

limited to 100 or 200° pixels in volume, with periodic boundaries employed to reduce
surface errors. Larger images can be generated, but the programs that compute quantities
like elastic moduli, fluid permeability, and electrical and thermal conductivities, are much
more computer memory intensive, and so 100° to 200° are the largest images used at
present. We use a filtering function, applied to a 3D random noise image, that is based on
correlation analysis of a real 2D image of the porous glass microstructure. Algorithms with
some similarities to ours have been previously used for porous Vycor [11], which employed
the filtering of a random white-noise image with the convolution of a Laplacian and a
Gaussian function. Alternate generation techniques for porous Vycor based on spinoidal
decomposition [12], an ‘intersecting growth mechanism’ [13], and phase separation in a
3D Ising model [14] have also been previously presented, although not with the extensive
testing of properties given in this paper.

Starting with a 2D binary image of porous Vycor [15], the 2D autocorrelation function
for the pore phase is determined. If the M x N pixel 2D image is defined as a discrete
valued function, I(x, y), where I(x, y) is equal to one for pore pixels and zero for solid
pixels, the two-point correlation function for the porosity is given by [16]
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The function S(x, y) is then converted to its polar form and averaged over all orientations

to obtain S(r). Finally, the autocorrelation function, F(r), for the porosity is defined by

[17]
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By definition, F(0) = 1 and F(r) — 0 as r —> 00, since S(r) — [5(0)]* as r — oo. For
an isotropic, random material like porous Vycor, F(r) is nearly zero for r of the order of a
few times the largest pore size.

Since, for a large enough image of an isotropic material, the autocorrelation function
will be the same in two and three dimensions, it can be used to filter a 3D image of white
noise [18]. For a finite size image, there will of course be some slice-to-slice fluctuation.
For the size image considered here, these fluctuations were negligible. After the filtering
process, a grey scale image is obtained. A threshold grey scale is then chosen, such that all
pixels with grey level above and below this threshold are set to either solid or pore. This
threshold grey scale is such that a 3D binary image is created in which the porosity matches
that of the original 2D image.

Finally, a surface rearrangement algorithm based on analysis of local curvature [19-21]
is used to alter the hydraulic radius (the ratio of pore volume to pore surface area) of
the computed 3D structure. Usually the hydraulic radius is adjusted so as to match that
measured for the original 2D image [10], providing a 3D computer representation of the
material microstructure with the correct porosity and pore surface area. However, it is
known that porous Vycor glass is a variable material, with a variable pore size and surface
area. In the literature, values for the nitrogen BET surface area range from 100 m? g~!
[15] all the way up to 173 m? g~! [5]. We have had to generate 3D images with different
surface areas in order to be able to accurately compare with experiments, as many properties
are sensitively dependent on surface area, or, equivalently, since the porosity is fixed, on
hydraulic radius and pore size. This may be easily done using the surface rearrangement
algorithm. A portion of a computed 3D microstructure of the porous Vycor glass is provided
in figure 1, with a surface area of 70 m? g~!. It is important to note that the scale of the
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universal gas constant, and Py is the vapour pressure for a planar surface (K = 0) at
standard conditions. For water, yf = 0.07 N m~—2 and Vp = 1.8 x 10~ m3 mol™!, while
R = 8314 T mol™' K7, and T was taken to be approximately the same as was used in
experiment [9], 300 K. The dimensionless ratio P/ P, defines the relative humidity. Based
on equation (3), sorption can be approximately simulated at a given relative humidity
using a geometrical criterion that determines all of the locations in the pore space where a
digitized sphere of radius r can be placed without overlapping any of the solid phase. In
this case, K = —2/r (concave meniscus), so that equation (3) gives the vapour pressure
of a meniscus of radius r. These locations are removed from consideration as sites for
occupation by condensed water at the given value of P/P, but not for occupation by an
adsorbed layer, and those remaining indicate the locations of the condensed liquid. Using
a digitized sphere is of course only an approximation. Any surface has two principal radii
of curvature in 3D, so that a variety of ellipsoidal shapes are possible for the air—water
interfaces [22-24], which will not be simulated by our algorithm.

For desorption, the above geometrical constraint must be augmented by a connectivity
analysis [1]. During desorption, a capillary pore can empty only when its size equals or
exceeds the Kelvin-Laplace radius and when it is connected to the exterior of the sample
by a pathway consisting exclusively of the same size or larger ‘empty’ pores. Including this
connectivity analysis in the simulation of sorption isotherms produces a natural hysteresis
in the desorption—adsorption curves similar to that observed experimentally [1]. This
geometrical analysis is applied to the porous Vycor microstructures to produce a series
of three-phase composites consisting of solid, air-filled pores, and water-filled pores.

As was mentioned above, in order to carry out the sorption computation properly,
especially for the smaller pores, it is necessary to first determine the thickness, ¢, of the
adsorbed water layer as a function of relative humidity. Here, we use an empirical equation
developed for cement-based materials [25]:

t =0.395-0.1891n [— In (—P—>] (nm). 4)
Py

Two other 1 (RH) functions in the literature are actually quite similar to this one [26,27], so
that the choice of function would not make a large difference in the results. In equation (4),
the thickness of the water layer is given in nanometres. Computationally, for a given
relative humidity, a sorbed water layer n pixels thick (n = O or 1) was first placed on
the solid surfaces (using a dilation algorithm) before executing the geometrical algorithms
for sorption described above. Non-integer pixel adsorption thicknesses, x, determined using
equation (4), were approximated in a two-step approach. First, the integer value of x, int(x),
dilations were executed, followed by the geometrical sorption algorithm. After sorption, the
total amount of water present was incremented by adding the value obtained by multiplying
the exposed (to air) surface area remaining after the capillary condensation analysis by the
factor [x — int(x)] [1].

There are some difficulties in using the Kelvin—Laplace equation as described above.
Using molecular dynamics and density-functional theory studies of adsorption in a single
pore, it was found that equation (3) starts to break down significantly at pore sizes of
about 5-10 nm [28-30]. This is the typical pore size in porous Vycor. However, by first
considering a water layer on the pore surfaces, before estimating capillary condensation
with equation (3), we are in effect using a modified Kelvin—Laplace equation, which has
been shown to work somewhat better at smaller pore sizes than the unmodified Kelvin—
Laplace equation [29]. Also, we desire to compute adsorption and desorption on a general
pore structure represented by a digital image, not on a single model shape pore. The
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computational burden would be enormous if Monte Carlo [28] or density functional theory
[31] were used to more correctly handle the actual fluid molecular state in pores less than
10 nm in width. In the real pore space that we want to consider, there are no nicely-shaped
(slit, cylinder, etc) pores on which to operate these more powerful but more complicated
techniques [32]. The simple but approximate geometric technique outlined above can
equally well be applied to any type of pore space, and is particularly suited to digital
images, which is usually what one has to deal with in looking at real systems.

There is also evidence that the main cause of the hysteresis loop between adsorption
and desorption is percolation effects due to the pore network, not the size and shape of
individual pores [30,33,34]. In that case, the topology of the pore network will tend to
wash out individual pore details that are treated somewhat incorrectly by our algorithm.
More discussion of this question will be delayed until section 4.

2.3. Experimental measurement of sorption isotherms for porous silica glass

The sorption isotherms were measured using a hygrogravimetric method [35]. The mass of
the sample was continuously recorded in a chamber in which the temperature and the relative
humidity were controlled. The required partial pressure of water vapour was produced by
mixing dry air and water-saturated air. For adsorption, starting from a relative humidity of
around 3%, the relative humidity was increased in a stepwise manner. For both adsorption
and desorption, the mass of the sample was allowed to reach a constant value, before the
relative humidity was increased or decreased. The relative humidity range of the apparatus
was 3 to 98%. It should be noted that differences which exist between experimental
curves published in the literature are probably at least partially due to the variability of
the porosity and pore structure of porous Vycor glass from one sample to another, and
not only differences in experimental techniques. Computationally, we have noticed large
differences in sorption/desorption for different surface area models, as the hydraulic radius,
for a fixed porosity, acts as a length scale for the pore sizes in the pore space, which of
course will greatly affect the amount of water present at a given RH value. The surface area
of the experimental sample used was not measured, but was probably somewhere between
100 and 200 m? g~!, typical for porous Vycor.

2.4. Computation of capillary pressure and change in specific surface free energy

To compute the shrinkage due to capillary condensed water, it is necessary to specify the
stresses present in this water in the microstructure. The hydrostatic pressure or capillary
tension in the capillary-condensed water is given by the simple expression

Ocap = Ky )

where for a given relative humidity, K is calculated using equation (3).

The shrinkage due to the surface adsorbed water (Bangham shrinkage [36]) is based on
the specific surface free energy (J m~2) change that occurs as the thickness of this adsorbed
layer changes. This change is given by the Gibbs adsorption equation in the form {37]

RT [F P
Aye=—— | td{In|— 6
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where P is less than Py. The zero point for the surface free energy can be taken to be
at 100% relative humidity, in order to convert Ay; to y;. The zero point is arbitrary, as




Modelling drying shrinkage in reconstructed porous materials 217

0.25 T T T T T T T T

0.20

o
-
(5]

Surface energy (J/m?)

0.05

0.00

0.0 0.2 0.8 1.0

0.4 0.6
Partial pressure (P/P )

Figure 2. The computed change in surface energy as a function of relative humidity from
equation (7) in the text.

only the change in surface energy is physically meaningful. The expression for ¢ given in
equation (4) was substituted into (6) and the integral then computed to give

P —107°RT P P P

Figure 2 provides a plot of y, against relative humidity determined using (7). In figure 2, at
zero RH, the surface free energy is about 0.2 ] m~2. In Iler [38], the surface energy of a fully
hydroxylated silica surface is given as 0.13 T m~2, while for a fully dehydroxylated surface
the surface energy is about 0.26 J m~2. For the porous Vycor material being considered,
the value of 0.2 T m~2 falls in between these values, which is a reasonable result, as the
surfaces in Vycor are probably not at either of these two extreme hydroxylation points [8].

2.5. Finite-element technique for shrinkage and elastic moduli

Once a model microstructure has been generated, it can then be analysed using a finite-
element technique especially adapted to digital images. In this technique, each cubic pixel
in the 3D image is taken to be a tri-linear finite element, which results in a finite-element
problem with as many nodes as there were pixels in the original image. This is a large
computational problem, too large for a direct solver like a Gaussian elimination method,
and so requires a relaxation solution method like the conjugate gradient algorithm [39].
To find the elastic moduli of a model microstructure, periodic boundary conditions are
applied that incorporate a fixed applied strain. The numerical solution (minimum elastic
energy) for the displacements is found [40], and the elastic moduli are simply given by the
average stress found in the problem, in the usual way of composite theory [39,41].
Computing the shrinkage due to internal forces is somewhat more complicated, requiring
extensions to the basic 3D digital image finite-element method. In this case, the overall size
and shape of the system must be made variable, so that the energy of the system depends
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not only on the displacements in each element, but also explicitly on the size and shape of
the unit cell of the system. In response to internal forces that tend to make the material
shrink (or expand), the size and shape of the unit cell can then adapt itself so as to minimize
the elastic energy and find the correct solution for the overall shrinkage. The internal forces
in a porous medium come from the negative pressure in the capillary water, which acts on
the solid surfaces with which it is in contact, and the changes in the specific surface energy
in the adsorbed water layers.

The effect of the negative pressure in the capillary water is computed by applying the
appropriate stress directly to the nodes on the capillary water—solid surface. To handle the
effect of the specific surface energy on the system size, a term is added to the system energy
of the form

Us = ¥Sa (®)

where S, is the surface area in square metres of the exposed surfaces, and y; is the specific
surface free energy (J m™2). As before, an exposed surface is a surface that is not covered
with capillary water. The surface area of the digital structure can be written in terms
of a power series in the displacements of the nodes. Since only small strains are being
considered, the series is truncated at linear order. The result is an additional term in the
finite-element elastic energy that is linear in the nodal displacements. The system shape
and size is then modified to minimize this overall energy. For example, for an unstrained
system, with no capillary water, the system will shrink, thereby reducing the surface elastic
energy by reducing the surface area at the expense of increasing the volume elastic stored
energy by the same amount [8].

An important test case for the treatment of surface energy is that of the dilute limit
of a few volume per cent of spherical holes in a solid frame, with a specific surface
energy term applied to the surface. This problem is easily solved using spherical polar
coordinates [42—44]. One applies a uniform radial displacement U, which would arise due
to the application of the surface energy, to the surface of a spherical hole embedded in
the centre of a large solid sphere of elastic moduli K and Gs. The resulting volume
elastic and surface free energy is minimized with respect to U/, and the new size of the
system computed. For the dilute case, the result for the linear strain ¢ that arises from the
application of the specific surface free energy y; is

—¥ [ 3 4
*= 6a (GS+K5>C 2
where ¢ is the porosity and a is the radius of the hole. In this case, we are starting from
v, = 0, so actually y; = Ay;. For a 15 pixel diameter spherical hole in a 40* unit cell, the
agreement of the finite-element method with the exact result was 4.7%.

Another test case can be found in Scherer’s paper [8], the shrinkage per unit surface
energy in an intersecting cylinder model. This consists of a simple periodic cubic structure,
with equal diameter circular cylinders oriented along the x, y, and z directions, which pass
through each other. The radii of the cylinders is a, and the size of the unit cell is L. The
quantity x = a/L is determined by the porosity of the model, and the specific surface area
is determined by the size of L in real units. Detailed formulae can be found in [8]. A test
case was set up using a 607 pixel unit cell, with 41 pixel diameter cylinders. The solid had
K, = 20.44 GPa, and G, = 16.30 GPa. The theoretical prediction for the shrinkage per unit
surface energy was —1.24 x 1073, while the finite-element computation gave —1.17 x 1073,
a difference of only 5.6%.

Mackenzie [6] gives a formula for the dimensional change of a fully-saturated porous
medium, which has a pressure pcg, in the pore fluid. This equation is only exact when the
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solid frame is linearly elastic, and the pores are fully saturated. If K is the bulk modulus
of the porous solid, and K is the bulk modulus of the material making up the solid frame
of the porous solid, then the linear strain ¢ is given by

__ Peap l__l_
£ = 3 (K Ks)' (10)

The value of K is for empty pores, which assumes that the bulk modulus of the pore fluid
has no effect. This will be the case when the bulk modulus of the pore fluid is much less
than that of the solid frame, and/or if the pore fluid is free to flow in and out of the porous
material as the size of the material changes. For negative pressure (hydrostatic tension), the
strain is negative, implying shrinkage. For a partially saturated porous solid, the average
of the capillary pressure over the pore space can be used instead of p,, which brings in
a factor of S, the saturation. The resulting approximate shrinkage equation for partially
saturated porous solids is

Speap {1 1
= — ——). 1
T3 (K K5> (n

The shrinkage for the dilute limit of spherical pores filled with a fluid of pressure pc,, can
be determined from the dilute elastic moduli limit of a spherical hole [45],

K : (BK, + 4G;)c

12
K, 4G, (12)

where ¢ is the porosity. The finite-element algorithm gives agreement with the exact result
to within 1 to 2%. In equation (10), only the effective bulk modulus needs to be known in
order to know the strain that arises due to a pressure in all the pores. An analogous result
is that of Rosen and Hashin [46] where, for a two-phase random material with arbitrary
thermal expansion coefficients and moduli, only the effective bulk modulus needs to be
known in order to know the effective thermal expansion coefficient exactly.

We have found that equation (11) holds very well for saturations of 80% or more,
but decreases in accuracy for lower saturations. To actually compute the capillary-driven
shrinkage for partial saturations, it was necessary to surround the system with a one half
pixel thick wall, as shown schematically in 2D in figure 3. Periodic boundary conditions
were impossible to accurately maintain without this wall. Without the wall, numerical
instability seemed to arise when the system was only partially saturated and periodic
boundary conditions were used. The wall was not necessary for computing shrinkage at
saturation. The elastic moduli of this wall were chosen so that when the pore space was
fully saturated, the exact result according to equation (10) was found. A value of one fifth
of the effective moduli of the entire system was used, which was independent of the size of
the system in pixels. The choice of the wall moduli compensated for the small increase in
surface area caused by the wall touching the pore space, therefore preserving the accuracy
of the computational method.

So for both shrinkage mechanisms, negative capillary pressure and changes in specific
surface free energy, the finite-element codes give accurate evaluations of exactly known
dilute limits, and so should therefore give reasonably trustworthy results for the more
complicated porous Vycor glass microstructures. Finite-difference codes were also applied
to compute electrical and thermal conductivity, and fluid permeability. The details and
accuracy of these algorithms have been described elsewhere [10, 44].
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Figure 3. A schematic picture of wall construction (2D) for partially saturated systems. Dashed
lines show periodic cell boundaries. Black = wall, grey = material.

3. Microstructure and properties of porous Vycor glass

A two-dimensional binary (pore/solid) image of porous Vycor glass was taken from [15]
and [47]. The image provided in the reference was digitized and thresholded, to obtain a
binary image with a porosity fraction of 0.31, in agreement with the original measured value
[15]. The autocorrelation function measured for this image was then used to reconstruct
3D porous Vycor microstructures with the same porosity, as was discussed earlier. Four
different surface area (units of square metres of surface per gram of solid) systems were
generated. A 70 m? g~! system was generated to compare with the measured surface area of
the TEM image, a 100 m? g~} system was generated to compare with the actual measured
nitrogen BET surface area of this same material, a 129 m? g~' system was designed to
compare with the material used by Amberg and McIntosh [9] for shrinkage measurements,
and a 173 m? g~! model was made to match with the material used by Yates for his low
RH expansion measurements [5]. Figure 4 shows a slice from each of these four systems,
all taken at the same point in the material. The top left is the 70 m?® g~! model. The surface
area then increases clockwise among the four pictures. It is interesting to note that the
typical pore size appears to decrease as the surface area increases, with fine scale roughness
showing up in the pores for the higher surface area material, reminiscent of what has been
referred to as the ‘gel’ porosity in porous Vycor glass [8].

These generated 3D microstructures were then tested in several ways, in order to check
how well their properties compared with real porous Vycor. These computations included:
specific surface area, TEM generation, electrical conductivity, thermal conductivity, fluid
permeability, elastic moduli, and low (0% RH) and high (~100% RH) relative humidity
shrinkage. In all four systems, the pore space was completely percolated, i.e. there were no
isolated pores.
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Figure 4. The same slice of different surface area reconstructed porous Vycor glass structures
(clockwise from upper left: 70, 100, 129, and 173 m? g~!). Dark grey = solid, white = pore.

3.1. Surface area

One should note that in computing the surface area of a digital image, there is a correction
factor needed. Because the surface area is made up of pixel faces oriented in the x, y, and
z directions, the actual surface area is overcounted by a factor of 3/2. Consider an isolated
spherical pore with radius r. Project the pixel faces onto the 4-x, £y, and the 4z directions.
One gets six circles, each with area 772, for a total surface area of 672, instead of the true
surface area of 4772, Therefore, in all cases the digital surface area, computed by counting
pixel faces, was corrected downwards by a factor of 2/3.

The surface area of the reconstructed system per total volume was computed to be
70 m* g=' in comparison to the value of 74 m? g~! computed directly on the 2D image
[15]. For this same material, a surface area of 100 m? g~! was measured using BET analysis
of nitrogen sorption [15], which probes the surface structure at a higher resolution than that
of the TEM image. The resolution of the TEM image was about 1 nm/pixel, so pores
smaller than about 1 nm will be missing from the image, and pores up to a few nanometres
in size will be distorted from their original shape, since they will be represented by only
a few pixels [48]. These pores will tend to keep water in them down to lower relative
humidities. This will cause errors in the model computations of both water sorption and
shrinkage [8], as will be discussed further later.

3.2. TEM images

Having a 3D digital model image available makes it simple to approximately simulate the
appearance of a TEM micrograph. A slice of the appropriate thickness is taken from the
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(b)

Figure 5. (a) Real and (b) simulated TEM images of reconstructed 3D porous Vycor glass
microstructure (40 nm thick, the simulated image is 500 nm by 500 nm). The real image is
adapted from [15]. The scale bar on the real image (a) is 1000 A = 100 nm.
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model, and then mapped through the thickness into a 2D image, where the grey level of
each pixel in the mapped image depends on the solid density through the thickness of the
microstructure at the location of the pixel of interest [1]. Figure 5 shows a comparison
between the real (a) and the simulated (b) TEM images. The simulated image has the
same surface area as does the experimental TEM image. There is a definite qualitative
resemblance between the two images, which, by itself, does not of course tell us very much
about the accuracy of the reconstruction algorithm.

3.3. Electrical, thermal, and fluid transport coefficients

Table 1 gives the results of various transport computations on the four systems. Data for a
fifth system, listed in the next to the last row of the table, is included for comparison. This
model’s pore space was made up of three different sizes of randomly placed non-overlapping
spherical pores, such that the porosity (0.35) and the surface area (180 m? g~') was similar
to the 173 m? g~! porous Vycor glass models. The last row of data, for the cylinder model,
will be discussed later.

Table 1. Transport and elastic properties for different models.

SA Permeability

Model (m?* g™ Porosity Fp Fy 10719 m? ve EJE; v
Vycor 70 0.31 164 206 18405 0.1 0276 0227
Vycor 100 0.31 161 212 0802 0.1 0283 0218
Vycor 129 0.31 158 218 0424006 0.1 0293 0206
Vycor 173 0.31 162 224 0224002 01 0302 0.197
Sphere 180 035 o 212 00 0.1 0435 0.143
Cylinder 173 0.32 63 19 057 0.1 044* 0087

2 In the principal (x, y, z) directions.

Electrical conductivity is examined first. Glass is itself an electrical insulator. If the
pores of the porous Vycor were filled with a conductor, however, then the entire sample
would be a conductor, since the pore space is percolated. The formation factor Fj is
defined as [49] the ratio of the pure conducting (pore) phase conductivity to the bulk sample
conductivity, so that F is always greater than one. This parameter can be calculated using a
finite-element scheme similar to that described for the elastic properties, or a finite-difference
scheme [44,50,51]. Values of F, ranging from 15.8 to 16.4 were found for the various
surface area porous Vycor models using a finite-difference method. There was very little
difference between the x, y, and z directions. An experimental result has been previously
obtained for porous Vycor filled with indium metal [52]. A resistivity of 150 & cm was
measured at room temperature, while the room temperature resistivity of pure indium is
8.37 © cm. That gives a formation factor of 17.9, so that the model value is in good
agreement with the measured one. Other experimental results by the same authors give
F, 7 20 [53], so there can be some variation from system to system. The experimental
papers did not give a measured value of surface area, but as shown above, the value of
F, does not greatly depend on surface area and pore size. The three-sphere model has a
disconnected pore space by construction, and so has an infinite value of F,.

If the pore phase of porous Vycor glass is considered to be empty, then the thermal
conductivity of the material will be dominated by heat conduction through the solid phase,
with the pore phase now being a thermal insulator. A formation factor F; can be defined
analogously for this case, being defined as the solid backbone thermal conductivity divided
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by the porous Vycor thermal conductivity. This can be computed with the same finite-
difference method as was the electrical conductivity, with resulting formation factors F;
ranging from 2.06 to 2.24, again with very little difference between the three principal
directions. A measured value of the formation factor is Fy = 2.1 [54], so again the model
prediction agrees well with experiment. As for the pore space conductivity, the value of the
thermal conductivity formation factor Fy; does not seem to greatly depend on the surface
area. The three-sphere model has a value of Fy of 2.12, very close to experiment and to the
other model results, so that F; is not very sensitive to microstructure. If, for instance, the
pore phase and the solid phase were arranged in parallel fashion to each other, the value of
F, would be F, = 1.45, which is only 31% different from the experimental result.

Tha alantrical Anet
The electrical conductivity of the pores and the thermal conductivity of the backbone

were not very sensitive to pore space details, so are not a stringent test of how well the pore
space has been simulated. The permeability, however, should be much more sensitive to
pore size, because of the zero velocity boundary condition at all fluid—solid interfaces [50].
The pore space of porous Vycor glass is continuous, so that if the pores are saturated with a
fluid, and a pressure gradient is applied, Darcy flow will be observed in the bulk and the fluid
permeability can be determined. Using previously developed numerical techniques [50, 55],
and neglecting the effect of molecular size, we can compute the fluid permeability, averaged
over direction. In table 1, the permeability can be seen to range from 1.8 x 1071 m? for
the lowest surface area, and therefore highest hydraulic radius, down to 0.22 x 10~ ‘9 m?
for the highest surface area and therefore lowest hydraulic radius material. The standard
deviations listed in the table were computed over the three different principal directions, so
that these samples were rather anisotropic as far as permeability was concerned, which is a
finite size effect. Experimental values in the literature, using various fluids and techniques,
range from 0.4 to 1.0 x 1071 m? [56-58], so in general there is good agreement between
the range of model permeabilities and the range of experimental permeabilities. Some of the
differences in experimental permeabilities were probably due to molecular size and viscosity
differences in the fluids used, but some were on different systems. Unfortunately, none of
the references that we found for the permeability of porous Vycor glass also measured the
surface area, so we cannot directly compare equivalent experiments and computations. The
three-sphere model has zero permeability, because of its disconnected pore space.

For the porous Vycor glass models, clearly the surface area, and therefore the hydraulic
radius, is setting the scale for the pore size, since we can think of the permeability as
proportional to the inverse of the electrical formation factor times a typical pore size squared
[59]. Since the electrical formation factor is roughly constant for the different surface area
materials, the typical pore size must be changing with the surface area. If we assume that
the typical pore size scales linearly with the surface area [50], then the square root of the
permeablhty ratio should scale as the inverse of the surface area ratio. For the 70 m? g~
and 173 m? g~! models, the square root of the permeability ratio is 2.9, while the inverse
of the surface area ratio is 2.5, so the above statement is approximately true. Comparing
the other systems with each other leads to similar results.

3.4. Elastic moduli

The elastic properties of the porous Vycor model were computed using the finite-element
code described previously. For a given assignment of bulk and shear moduli for the solid
phase, the program computes the porous material moduli with reasonable accuracy. The
main question is then: What moduli do we use for the solid backbone? One cannot just
use the moduli of fused silica, which is what porous Vycor glass becomes after being fully
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sintered. Scherer [8] has shown that the moduli of porous Vycor changes as it is heat
treated, even without any changes in the porosity. Apparently this heat treatment drives off
hydroxyl groups that tend to soften the solid backbone structure. The solid backbone of
as-received porous Vycor glass, therefore, can have a much lower Young’s modulus than
that of fused silica [8]). The effective Poisson ratio for porous Vycor glass was found to
range from 0.15 to 0.19, however, with little change after heat treatment.

Scherer’s data can be used to determine the solid backbone moduli to be used in the
model in the following way. The porous Vycor glass that Scherer used had a surface area
of 149 m? g7!, so the 173 m? g~! model was compared to the experimental results. For
heat treatment roughly equivalent to that of Yates [5], Scherer measured a Young’s modulus
E of 19.6 GPa. The model computation gave E/E; = 0.3, so the solid backbone modulus
E would be 65 GPa. (The elastic data for all the systems is given in table 1.)

A range of values for v, the Poisson ratio of the solid frame, was chosen, and the
effective Poisson ratio, v, computed. It was found, in agreement with previous work [39],
that there was a critical value of v,, denoted v, such that for v; < vy, v > v, and for
v > v, v < v,. This behaviour is ubiquitous in two-phase materials. It can be shown
exactly in two dimensions [60], and has been seen in three dimensions [39, 61], for different
kinds of porous microstructures. The particular value of v} found of course depends on the
microstructure. Figure 6 shows the numerical results for the Vycor 173 m? g~! model, along
with the results of two effective medium theories [62-64] at the same solid volume fraction
of 0.69. The effective medium theory curves were added to show that this behaviour is
ubiquitous in porous materials [61]. The actual v against v, curves are quite linear, and
have a slope less than one. The two effective medium theories have an exact fixed point of
v =0.2.

The slope of the v against vg curves will depend on porosity. It is easy to see why this
is so. If the porosity were zero, then the v against v; curve would be exactly linear, passing
through the origin with a slope of unity, since for any vaiue of v, one must have v = v,.
When the porosity becomes non-zero, consider the physically allowed limits for the Poisson
ratio of the solid frame, vy = —1 and 0.5 [65]. At the v, = —1 endpoint, the only way that
the porous solid Poisson ratio can change upon introducing porosity is to increase, since
v cannot be less than —1. At the vy = 0.5 endpoint, the porous solid Poisson ratio must
decrease when the porosity becomes non-zero, since v must be less than 0.5. Therefore
the v against v, curve goes above the v = v, line at negative values of v, and goes below
the v = v, line at values of v, near 0.5. Somewhere in between the physical limits, the v
against v, curve must cross the v = vy line, and therefore the behaviour seen here comes
about. More analysis of this behaviour is given in [61].

For porous solids made up of randomly placed non-overlapping spherical pores, where
the pores are monosize and the porosity ¢ is small, a few per cent at most, one can use the
exact dilute limit (44, 45] for spherical pores and directly see how porosity affects the slope
of the v against vg curve:

30— - Sug
=W 207 — 5v9)

The value of v} is clearly 0.2, and v, < 0.2, v > v, and for v; > 0.2, v < v;. Expanding
(13) around v} = 0.2, one obtains the straight line result v = 0.2 + (1 — 1.2¢)(v, — 0.2),
whose slope clearly decreases from one as the porosity increases from zero. The Hashin
upper bound for a two-phase material, where one of the phases is porosity [66], also gives
this behaviour, where v} = 0.2 for any porosity.

For the reconstructed Vycor models, v¥ was about 0.3, so that in order to achieve a

(13)
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Figure 6. The v against v, curves for the 173 m? g~! Vycor model and two effective medium
theories [62, 63]. The dashed line is the line of equality, v = v;.

value of v between 0.15 and 0.19, the value vy = 0.1 was chosen, which gave v = 0.2,
This value of v} is probably higher than in reality, for the following reason. The elastic
moduli of fused quartz, which presumably is what the backbone of Vycor approaches as it
is heat treated [8], are E = 72 GPa and v; = 0.16 [67]. Using v, = 0.16 in the 173 m? g~}
model would give too high a value for v of the porous solid. If, however, the value of
v* for the 173 m?> g~ model were lower, say about 0.2 or so, then a backbone value of
vs = 0.16 would give about the correct value of v. Looking at figure 6, if the Vycor data
points were each lowered by about 0.05, then they would agree closely with the Berryman
effective medium theory, and would give a value of v, of about 0.2. Also, looking at table 1,
one notices that the porous solid Poisson ratio decreases with increasing surface area, or
increasing fine structure (see figure 4). Since all of the models are built from the TEM
picture, which only has 1 nm resolution, some of the finest Vycor structure is missing from
even the 173 m? g‘l model. If this fine structure could be included in the model, the value
of v obtained would then likely be reduced, in analogy with table 1, and so agree better
with the experimental value.

Comparison with the measured Young’s modulus of the non-heat-treated porous Vycor
glass gave a solid backbone Young’s modulus of 49 GPa. To show the effect of
microstructure, the next to the last row of table 1 gives elastic data for the non-overlapping
spherical pore system previously mentioned. The value of E/E; is significantly higher,
0.435, and the effective Poisson ratio increases to 0.143 from the backbone value of 0.1,
because the value of v} for this system is 0.22 {61].

For the heat treatment carried out in Yates’ work [5], Scherer [8] estimated that the
backbone Young’s modulus would be about E; = 50 GPa. For Amberg’s material, which
was not heat treated, the backbone Young’s modulus was estimated to be about E; = 38 GPa.
The cylinder model mentioned previously was used to determine these values. However,
this model is anisotropic, since it is inherently cubic. There are therefore three independent
elastic moduli, C;1, C}2, and Cys, not just a Young’s modulus and Poisson ratio, as reported
by Scherer [68,69]. Scherer predicted the Young’s modulus and Poisson ratio in the
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three principal directions, which are not the same as those determined by carrying out
an isotropic average of the elastic moduli tensor. Because this cubic model is stiffer in the
three principal directions, along the cylinders, the Young’s modulus of the porous Vycor
glass is overestimated by this model. Table 1 shows that E/E; = 0.44 for this model, in
the principal directions and at a porosity of 0.32, in good agreement with the approximate
analytic value predicted [8)] but significantly stiffer than the reconstructed model. That is
why the backbone modulus predictions of Scherer [8] are smaller than in the present work.
Also, the Poisson ratio in any of the three principal directions for the cylinder model is
predicted to always be smaller than the solid backbone Poisson ratio [8] (which checks with
computed results). This is not the case for an isotropic single solid phase material [61],
for the reasons given above. Rather, one would expect a critical value of v, as has been
demonstrated for the reconstructed models and for other microstructures {39, 60, 61].

3.5. Low relative humidity shrinkage

At very low relative humidities, where the material has no capillary condensed water, length
change (shrinkage on desorption and expansion on adsorption) depends only on changes in
the specific surface energy of the adsorbed water layer. Comparison to experiment in this
regime then does not depend on details of the absorption/desorption algorithm, but only on
the elastic properties and surface area of the model. ‘

Yates [5] has published data on the expansion due to the adsorption of various gases on
the pore surfaces in porous Vycor. Based on Scherer’s analysis [8] of this data, for argon,
below capillary condensation, the expansion strain could be expressed as 0.00545 (m? J=1)
Ay. In other words, a change of 1 J m~2 in the specific surface energy would produce
a strain of 0.00545, taking totally dry Vycor as the baseline of zero strain. Amberg and
MecIntosh [9] have made the same measurement for the adsorption of water vapour. The
strain coefficient was found to be about 0.01 (m? J~!) [8]. Hiller, for water absorption in
a similar material, also found a strain coefficient of about 0.01 (m? J=!) [70]. The porous
Vycor glass used by Amberg and Mclntosh had a lower surface area than Yates, 129 against
173 m? g~!, which would tend to decrease the strain slope. However, the glass used by
Amberg and Mclntosh was not heat treated, so it would have had a lower backbone modulus.
These two effects roughly cancel out, so that both glasses should have had approximately the
same strain slope [8]. This relative increase for water vapour against argon was attributed
by Scherer [8] to the absorption of water into the glass backbone, due to the many hydroxyl
groups present in the glass before heat treatment at 500 °C, which causes swelling of the
solid backbone, and hence swelling of the porous composite. Since this mechanism is
not present in our computations, we will compare our results to Yates’ value of 0.00545
(m? J='Y Ay, or a strain coefficient of 0.00545. The measured nitrogen BET surface area
of Yates material was 173 m? g~', so this reconstructed model was used for computing
the surface energy-driven expansion/shrinkage. For the 173 m? g~! model, a backbone
value of E; = 59.1 GPa, with v, = 0.1, gives a strain coefficient of —5.45 x 1073, in
exact agreement with experiment and with Scherer’s prediction. The surface energy-driven
shrinkage of the cylinder model also agrees well with experiment, using the lower values for
the backbone modulus {8]. Scherer’s prediction, with his values of the backbone modulus,
also agrees well with the model prediction, when E; = 44.9 GPa, for the strain coefficient
of the 129 m? g~! material: 5.4 x 10~* (Scherer) against 5.2 x 10~ (model).
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3.6. High relative humidity shrinkage

Another limit that can be critically examined is the high relative humidity limit. In this
limit, as the RH value decreases from 1, the sample stays essentially fully saturated, but
the water is placed under a negative pressure (hydrostatic tension). Therefore, Mackenzie’s
formula, equation (10), applies, and is exact. Amberg and MclIntosh have data for 94%
and 82% RH, at which, according to the model and experiment (see figure 7), the pores
are still filled. The experimental shrinkage strain increase between these two RH values
is 0.000530. Using Mackenzie’s formula applied to the model, with E; = 40.8 GPa and
v, = 0.1, makes the model agree perfectly with the experimental value.

0.40 - T T v — T
O—C0 A (experiment)

0.30 A&~ -4 D (experiment) = *%r
@—® A (model) .
+ - - D (model) ¢

Water volume fraction
[S)
n
o

o
o
o

0.00

0.0 1.0

Figure 7. Simulated (129 m? g~') and experimental sorption curves for the porous Vycor glass
(A = adsorption, D = desorption).

3.7. Best values of backbone Young’s modulus

Using these three experimental data points, the measured elastic moduli and the low and high
RH shrinkage measurements, one can obtain a value for the backbone Young’s modulus that
makes the model agree well with these experiments. For the 129 m? g~!, non-heat-treated
madel, the elastic moduli imply E, = 49 GPa, while the high relative humidity shrinkage
measurement implies that E; = 40.8 GPa. We then take their average, 44.9 GPa, which
gives an accuracy of —8.4% in the modulus and 10% with respect to the high relative
humidity data point. For the 173 m? g~! model, a value of E, = 65 GPa is necessary
for agreement with the elastic modulus, while a value of E; = 59.1 GPa is implied by
the Iow RH strain slope. Therefore, a value of 62 GPa is used, the average of these two
values, which gives an error of —4.6% in modulus and 4.9% in the strain coefficient. The
Young’s modulus ratio for porous Vycor glass, between the non-heat-treated and heat-treated
173 m? g~! models, according to these choices of backbone moduli, is then 1.42, which is
in good agreement with the measured ratio of moduli, 19.6/14.7 = 1.33 for a 149 m? g~!
system of similar porosity [8].

To infer solid backbone moduli from measured porous material moduli requires, in most
cases, a model of how the pores affect the measured moduli. The above choices are the best
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for our reconstructed models. There is no reason to prefer the values of backbone moduli
inferred in [8], since the cylinder model used was not isotropic. Its success in predicting
the low RH strain coefficient was probably due to the fact that the backbone moduli were
picked so that the composite, effective moduli were the same as experiment. Also, the
shrinkage strain tensor is second order, and so it is isotropic even for a cubic system like
the cylinder model.

4. Water sorption and shrinkage results

Figure 7 provides a comparison between the water sorption curves determined using
the spherical interface approximation on the 129 m? g~! reconstructed model, and
those measured experimentally. The surface area of the experimental system was
not characterized, which may certainly lead to some disagreement between model and
experimental results. Also, there is no temperature in the model algorithm, which could
also lead to some disagreement with experiment, since the shape of the hysteresis loop in
adsorption—desorption isotherms does depend on temperature [33]. The hysteresis in the
model results is entirely from pore network percolation effects, and so is independent of
temperature.

For desorption, the agreement between model and experimental results appears to be
reasonably good down to about 80% RH. After that point, the model appears to retain more
water than does the experiment. However, there is no experimental data between 75% and
60% RH. The breakthrough point could be as far down as 70%, which would give a region
where the model has less water than experiment (between 70 and 75% RH), followed by a
region where the model retains more water than experiment (20 to 70% RH).

For adsorption, starting at low RH, the agreement with experiment is good up to about
20% RH, and for RH values larger than 80%. Below 20% RH, the amount of water
retained is determined by the thickness of the adsorbed film and the surface area of the
material. It appears that these match well between model and experiment. At intermediate
humidities, the model picks up capillary water steadily, while the amount of water in the
experimental curve stays low and then rises rapidly at about 60% RH. By differentiating the
desorption isotherm, an estimated pore size distribution can be obtained. For the simulation
and experimental data, a fairly broad peak with a peak value at a pore radius of about
3-5 nm was obtained. This value agrees fairly well with the values of 3.5 nm measured
experimentally by Levitz et al [15] using nitrogen sorption and 5.7 nm measured by Scherer
[8] using nitrogen sorption.

The model results in figure 7 were obtained using a 200 digital image model. Tt is
probable that using a higher resolution system would improve results, but by how much
we do not know, as the available computer power is not adequate to go much higher in
resolution. In some respects, there is little point in going much higher in resolution, as
we are limited by the experimental resolution of the original TEM image, which is about
I nm/pixel. However, the adsorption—desorption algorithm uses digitized spheres in order
to find the location of capillary-condensed water. The diameter of these spheres goes down
to three pixels, since each pixel is a nanometre in length. A sphere that is three pixels in
diameter does not look terribly spherical. Having more resolution available at these small
diameters, or more pixels per nanometre, would allow better spherical shapes to be used
to compute the location of capillary-condensed water at intermediate RH values. Also, the
true shape of pores that are 1-5 nm in size would also be resolved better if there were more
than one pixel per nanometre. Both these effects might improve results in the intermediate
RH regime.
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Since the surface area of the experimental sample was not measured, there could also be
some differences between model and experiment due to different surface areas. However,
at low RH, as was mentioned above, the model agrees quite well with experiment. In
this regime, the water content is approximately just the surface area times the water layer
thickness, so the experimental surface area was probably similar to that of the model,
129 m? g~!, assuming of course that the layer thickness used was also accurate.

The known inaccuracy of the Kelvin-Laplace equation at small pore diameters
(5-10 nm) would certainly seem to contribute to the differences between model and
experiment in the intermediate RH regime. However, the hysteresis loop in the
adsorption—desorption isotherms, which makes up the intermediate RH regime, may result
mostly from pore network percolation effects [30,33]. In fact, untangling single-pore
adsorption—desorption effects from pore network effects is a difficult question [30]. So
it is impossible, with any degree of certainty, to determine how much of the disagreement
between model and experiment in the intermediate RH regime is due to the inaccuracy of
the Kelvin—Laplace equation for small pores. It is also known that the percolation aspects of
reconstructed microstructures can differ from the real microstructures [10]. This is because
2D images have no 3D percolation information in them, so that this information, in contrast
to quantities like surface area and porosity, is put in entirely by the reconstruction process.
Since hysteresis is sensitive to the pore space percolation, there will also be some error
in the intermediate RH regime arising from this cause. For globally averaged quantities
like electrical and thermal conductivity, fluid permeability, and elastic moduli, the model
microstructure gave values close to experiment. A more local quantity, such as how much
water is capillary condensed at a given relative humidity, is clearly much more sensitive to
the details of the pore space.

Figure 8 shows four partially-saturated slices of the 129 m? g~' model, all taken at
the same position, but at different RH values, starting with RH = 0.494 in the upper left,
then going clockwise to higher RH values (RH = 0.494, 0.656, 0.740, 0.791). The slices
were taken from systems undergoing adsorption. White is capillary-condensed water, grey
is empty pore space, and black is solid material. It is clear that water is added first to the
smaller pores, and then to progressively larger pores as the relative humidity is increased.
In 3D, using the adsorption algorithm described earlier, the menisci are roughly spherical,
so their 2D cross sections are roughly circular.

Figure 9 provides a plot of the computed shrinkage at general relative humidities,
showing the experimental data of Amberg and Mclntosh [9] for a 129 m? g7!,
non-heat-treated system. All results have been normalized to have zero shrinkage at 94%
relative humidity, the maximum humidity for which experimental results were recorded [9].
At partial and full saturations, the surface energy was only put on the part of the solid
backbone that was free from capillary-condensed water, since this term goes to zero for a
thick capillary-condensed water layer. Very good agreement is demonstrated between model
computation and experimental measurement from 94% RH down to about 80% RH. After
that, the experimental values stay higher than those from the model. Since the model, as can
be seen in figure 7, retains more water than does the experimental desorption at intermediate
relative humidities, it would seem that the model values should go above the experimental
values, not below. We attribute this to the same phenomenon that gives a higher strain
coefficient at low RH, that of water absorption into the solid backbone and thus swelling of
the backbone. As water leaves the pore space it leaves areas of the backbone dry and able
to lose water into the empty pore space. This will cause more shrinkage than what is due
to capillary forces alone, and ultimately result in a higher, by about a factor of two, strain
coefficient at low RH.
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Figure 8. Same slices of 129 m?> g~ model showing partially saturated conditions at different
relative humidities (clockwise from upper left: RH = 0.494, 0.656, 0.740, and 0.791) during
adsorption. Black = solid, light grey = empty pore, white = liquid water.
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Figure 9. Experimental and model shrinkage for porous Vycor glass (129 m? g~1) as a function
of relative humidity.




232 D P Bentz et al

The results of the model do tend to confirm a previously proposed explanation [9]
for the observation of a local maximum in the shrinkage against relative humidity curves
for porous Vycor. Basically, capillary-induced stresses are being replaced by stresses of
a smaller magnitude caused by changes in the specific surface energy. Depending on the
relative humidity at which the majority of the capillary pores empty, the new surface energy
stresses may or may not exceed the lost capillary-induced stresses. As shown in figure 2,
the surface energy contribution will be much larger if the pores empty at a low RH (<50%)
then if they empty at a higher one (> 60% as in this study), since the specific surface energy
is higher at lower RH values. Thus, the observation of a local maximum in the shrinkage
curves will depend on the pore structure of the material as well as on its surface energy
characteristics. The model also clearly indicates how strongly capillary-induced shrinkage
is dependent on the amount of capillary water in the microstructure, implying that sorption
isotherms are critical measurements for characterizing the shrinkage behaviour of porous
materials.

5. Discussion

A general pore space cannot accurately be thought of as pores with a certain shape that
are linked up like tubes in a network [34,71]. The finite-element techniques discussed in
this paper for computing shrinkage, along with the algorithm for estimating the location
of capillary-condensed water at a given RH value [1], constitute a novel technique
for modelling moisture-induced volume changes, including drying shrinkage, of porous
materials with general pore shapes and pore network topology. The technique for locating
capillary-condensed water is only approximate, however, because the Kelvin-Laplace
equation becomes inaccurate for very small pore sizes, and because the spherical interface
approach has only one radius of curvature, whereas real meniscii have, in 3D, two radii of
curvature.

Techniques were previously developed to produce a reconstructed 3D representation of
the porous medium from a 2D micrograph. In this paper, this reconstruction technique has
been applied to porous Vycor glass, giving a 3D pore structure upon which the shrinkage
algorithm has been demonstrated and the reconstruction algorithm checked. Computed
properties such as elastic moduli, fluid permeability, and electrical and thermal conductivity,
have been used for comparison with experimental measurements, in order to test how close
the reconstructed model comes to reality.

The thermal conductivity of the backbone agreed well with experiment. However, this
quantity is not very sensitive to microstructure, because the three-sphere model gave results
close to that of the porous Vycor models, and these all had similar results, even though
their surface areas were very different. The formation factor of the pore space was also
nearly invariant with surface area, and agreed well with experiment. Even though these
quantities are not very sensitive to microstructure, and cannot be used by themselves as a
check on a model, it does seem true that if a model cannot reproduce these quantities in
agreement with experiment, then there is something lacking in the model’s representation
of the microstructure. Taking the cylinder model with a ratio of cylinder radius to unit
cell size of x = 0.355 gives a model with a porosity of 0.32. While the computed solid
thermal formation factor is reasonable, 1.9, the pore space formation factor is only 6.3,
three times less than the experimental measurements. The cylinder model is isotropic with
respect to conductivity, as the conductivity is a second rank tensor. Based on this result
alone, the microstructure of this model does not reproduce the porous Vycor microstructure
as well as does the reconstructed models. However, the cylinder model has only a single
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pore size, compared to the distribution of pore sizes available in the reconstructed models.
Because of this fact, one might not expect it to describe Vycor as well as the reconstructed
models.

The fluid permeabilities were really a test of pore size, since the tortuosity of the
pore space was in a sense given by the reciprocal of the pore space formation factors.
Reasonable agreement with experimental results were obtained, although experimental and
model results could not be precisely matched because the surface area of the samples used
in the experiments was not measured. If the length scale of the cylinder model is chosen
so that the cylinder radius is 3.33 nm at x = 0.355, with L = 9.4 nm, the cylinder model
then has 173 m? g~! of surface area. The permeability can easily be computed using the
same techniques, and is found to be 0.57 x 10~ m? along one of the principal directions,
in reasonable agreement with the range of experimental and model values found. However,
the square opening between the cylinders along one of the principal directions then has
width L — 2a = 2.7 nm. This size opening seems small, compared to experimental pore
diameters of about 7-11 nm [8,15]. This combination of a too small ‘pore width’ and a
too large value of 1/F for the pore space combine to give a reasonable permeability along
one of the principal directions. Since the Darcy permeability tensor is second rank, the
cylinder model will have an isotropic permeability tensor. However, if we assume that the
cylinder model represents only the main skeleton of Vycor, and not the very fine pores of
the ‘gel’ [8], a better value of surface area might be 100 m? g~!, as about one third of the
surface area of Vycor is in the very smallest pores [8]. In this case, we get an opening of
about 5 nm in diameter, which is in better agreement with experimental measurements of
the principal pore size in Vycor [8, 15].

The backbone elastic moduli of the reconstructed systems were chosen by fitting to
either the measured elastic moduli, the low RH shrinkage, or the high RH shrinkage. The
backbone moduli that came from these experiments agreed well with each other, giving
additional validity to this process. The model, therefore, did a good job of predicting these
three quantities using an average backbone Young’s modulus. However, the actual value
of v for Vycor is probably about 0.2, while the model gave a value of about 0.3. This
implies that there is a subtle difference in microstructure between real Vycor and the model
that causes this disagreement. The reasons that a microstructure has a certain value of v
is a subject of further research [61].

At intermediate RH values, the amount of water retained by the model was more than
in experiment, causing some error in shrinkage prediction. However, the phenomenon
of water swelling of the solid backbone may have caused most of the disagreement in
shrinkage strain at intermediate humidities (see figure 9), since the additional water in the
model would tend to make the model shrinkage greater than the experimental value, not
less. This phenomenon certainly made the experimental low RH shrinkage higher than was
predicted, as the argon results on the 173 m? g~! system [5] were very well predicted,
and there was no reason to believe that these results for the 129 m? g~! material used by
Amberg and MclIntosh [9] would not be equally well predicted.

Properties such as the solid thermal conductivity, the pore space conductivity, and the
high RH shrinkage strain are mainly functions of porosity only, and are not very sensitive
to pore surface area. However, some of the properties of porous Vycor glass are sensitive
to the surface area, namely fluid permeability, low RH shrinkage, and water adsorption
and desorption. One difficulty then in comparing model results to experimental results
was that in many cases the surface area of the porous Vycor glass was not measured.
The other difficulty was that water was used as the fluid for the desorption—adsorption
measurements, which brought in the solid backbone water-swelling effect, which was beyond
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the scope of our model. In areas that were comparable, however, the model compared well
to experimental results. In light of this good comparison with porous Vycor glass, we feel
that the reconstruction method offers a reasonable method for obtaining accurate 3D models
of porous materials from 2D images.

Finally, in the future we feel that it would be very interesting if experimental
measurements of the kind described in this paper (both kinds of formation factor, fluid
permeability, elastic moduli, adsorption—desorption, and shrinkage) were all made on a
single kind of porous Vycor glass, with a measured surface area, and using a gas like
argon for the adsorption-desorption measurements, so that the effect of swelling of the
solid backbone was not present. Then a complete comparison could be made with mode]
predictions. Based on the results in this paper, we feel that the reconstructed models would
continue to do quite well in such a more rigorous comparison.
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